Allocation dynamique de mémoire,

vecteurs

Sébastien Jean

IUT de Valence
Département Informatique

v1.0, 6 janvier 2026

IUTA

Valence

Université Grenoble Alpes

Allocation dynamique de mémoire

e Allocation statique (rappel)

e Association d'une zone mémoire a une variable

VARIABLE r : réel
VARIABLE t : tableau de booléens [4]
VARIABLE p : pointeur vers entier

T
r: reel
N
e 22
t: tableau de
booléens [4]
_ A
p: pointeur
vers entier IUTA

Valence
Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 1/26

Allocation dynamique de mémoire

@ Allocation dynamique

e Réservation de zone mémoire a la volée, sans variable

VARIABLE p : pointeur vers entier

p < ALLOUER entier

@ ALLOUER réserve une nouvelle zone mémoire de taille adaptée au
stockage d'une valeur de type donné et retourne |'adresse de
début de la zone mémoire

@

p: pointeur
vers entier

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 2/26

Allocation dynamique de mémoire

@ Libération de mémoire

e En théorie : pas de contrainte sur la quantité de mémoire disponible

e En pratique : ressources limitées, judicieux d'économiser.

VARIABLE p : pointeur vers entier
p < ALLOUER entier

LIBERER p

@ LIBERER libére la zone mémoire située a partir de |'adresse contenue
dans le pointeur et de la taille correspondant au type de valeur
référencée par le pointeur

@

p: pointgur NUL X
vers entler

IUTA

Valence

rsité Grenobl pe:

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 3/26

TDA : Vecteur (rappels)

1 2 3 4
[0 1—71231—12}
@ Type de données linéaire et dynamique, collection de valeurs (de type
T) stockées dans des cases contigiies identifiées par un indice

e Indices allant de 1 au nombre d’élements

@ Possibilité de lire et écrire I'élément a un indice donné
@ Possibilité d'insérer et retirer un élément a un indice donné

@ Possibilité d'obtenir la taille (nombre d'éléments)

IUTA

Valence

rsité Grenobl pe:

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 4 /26

TDA : Vecteur (rappels, suite)

@ Nom : Vecteur (de T)

e Dépendances : Entier, T (type des éléments)
@ Opérations :
e Constructeurs :
® vecteur vide : — Vecteur
e Transformateurs :

@ ecrire : Vecteur x Entier x T — Vecteur
® inserer : Vecteur x Entier x T — Vecteur

@ retirer : Vecteur x Entier — Vecteur
e Observateurs :

@ lire : Vecteur x Entier — T

@ taille : Vecteur — Entier

IUTA

; Valence
@ A suivre ... M

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 5/26

TDA : Vecteur (rappels, suite)

@ Pré-conditions

o ecrire(v, n, e) — 1 <n < taille(v)
o inserer(v, n, e) — 1 <n < taille(v) + 1
o retirer(v, n) — 1 <n < taille(v)

o lire(v, n) — 1 < n < taille(v)

Sébastien Jean (IUT Valence) R1.01, Algo

v1.0, 6 janvier 2026

IUTA

Valence

rsité Grenobl pe:

6 /26

TDA : Vecteur (rappels, suite)

@ Axiomes

taille(vecteur_vide()) = 0
taille(ecrire(v, n, e)) = taille(v)
taille(inserer(v, n, e)) = taille(v) + 1
taille(retirer(v, n)) = taille(v) - 1
lire(ecrire(vecteur_vide(), 0, e), 0) = e

lire(ecrire(v, 0, e), n) = lire(v, n) sin > 1

retirer(inserer(v, n, e), n) = v

lire(inserer(v, n, e), n) = e

lire(inserer(v, n, e), p) = lire(v, p) si p < n
lire(inserer(v, n, e), p) = lire(v, p-1) si p > n
lire(retirer(v, n), p) = lire(v, p) si p < n IUTA
lire(retirer(v, n), p) = lire(v, p+l) si p > n Valence

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 7/26

Enregistrements (rappels)

@ Un enregistrement est composé de plusieurs valeurs appelées
champs ou membres

e Nombre de champs fixe, champs nommés et de type quelconque
e Les opérations se limitent a la lecture et I'affectation des champs

o Accés aux champs via la notation pointée (variable.champs)

ENREGISTREMENT Point

CHAMPS x : réel
CHAMPS y : réel

FIN ENREGISTREMENT

VARIABLE p : Point

p.x < 0.0 "JTA\

p.y < p.x + 1 Valence

llllllllllllllllllll

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 8/26

Exercice

@ On définit un enregistrement Vecteur de T permettant de manipuler
un Vecteur (dynamique) en s’appuyant sur un tableau (statique)

o capacité / 2 si taille < 25% capacité, capacité x 2 si taille > capacité

ENREGISTREMENT Vecteur de T

CHAMPS capacite : entier
CHAMPS taille : entier
CHAMPS elements : poilinteur vers tableau de T

FIN ENREGISTREMENT

T
capacite : 6
entier
—__
T
taille : 4
entier
- @ [1] 2
elements : I UT A
pointeur vers @ -7 23 -12 Valence
tableau d,entlel’S \)/ iversité Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 9/26

Exercice

@ Ecrire les opérations :
@ vecteur_vide, taille,
@ lire, ecrire,

@ retirer et inserer

@ Les transformateurs sont considérés comme des producteurs

IUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 10 /26

Interlude : fonctions paramétrées

@ Une fonction peut aussi étre paramétrique (paramétre de type)

e Finalement la fonction décrit une famille de fonctions qui ont un
comportement similaire mais qui s'appliquent 3 des types de données
différents

FONCTION est_present(tab : tableau de T,
n : entier,
t : T) : booléen
FIN FONCTION

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 11 /26

Interlude : fonctions paramétrées

FONCTION est_present(tab : tableau de T,
n : entier,
t : T) : booléen
VARIABLE 1 : entier
POUR i DE 1 A n PAR PAS DE 1
SI tabl[i] = t ALORS
RETOURNER VRATI
FIN SI
FIN POUR
RETOURNER FAUX

FIN FONCTION IUTA

Valence

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 12 /26

Interlude : fonctions paramétrées

@ Dans notre pseudo-code, a I'appel d'une fonction paramétrée, le(s)
type(s) de parameétres fixe(nt) ce que vaut T

VARIABLE t : tableau d’entiers [3]
t[1] « 7
t[2] « 2
t [3] < -5

affiche_booleen (est_present(t, 6))

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 13 /26

Exercice : vecteur_vide

FONCTION vecteur_vide() : Vecteur de T

CONSTANTE C_DEF : entier (10) // (locale ou globale)
VARIABLE resultat : Vecteur de T

resultat.capacite < C_DEF
resultat.taille <« O
resultat.elements < ALLOUER tableau de T [C_DEF]

RETOURNER resultat
FIN FONCTION

. ‘
capaglte: 10
entier
-/
M)
taille : 0
entier
— @ [l [2] o1 [10]
elements :
pointeur vers @ —»[I J [I J IUTA
tableau d’entiers |) Valence

rsité Grenobl pe:

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 14 / 26

Exercice : taille

FONCTION taille(v: Vecteur de T) : entier

RETOURNER v.taille

FIN FONCTION

@ N.B. : on pourrait aussi se passer de fonction et accéder directement
au champs taille

e Accéder directement 3 la structure risque de compromettre |'intégrité
(taille et elements sont liés)

@ cf. plus tard la notion d'encapsulation en conception orienté objet . . .

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 15 /26

Exercice : 1lire

FONCTION lire(v : Vecteur de T, n: entier) : T
VARIABLE p : pointeur vers tableau de T

p < Vv.elements
RETOURNER (pT) [n]

FIN FONCTION

p:
pointeur vers n :
tableau d’entiers ~ entier

:. """""""""""""""""""" .:
capacite: | o | @ 2
: entier :
: —
: e B
taille : 5

entier :
— e 11 [[°1 [10]

pzliﬁ?;ﬁ?fxsér:s @ -2 I 4 } [I } IUTA

gtableau d’entiers |\) g Vqlence

rsité Grenobl pe:

v : Vecteur
d’entiers

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 16 / 26

Exercice : ecrire

FONCTION ecrire(v: Vecteur de T, n: entier, t: T)
Vecteur de T

VARIABLE copie : Vecteur de T
VARIABLE p : pointeur vers tableau de T

cople < Vv

p < cople.elements
(pT) [n] « t
RETOURNER copie

FIN FONCTION

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 17 / 26

Exercice : ecrire

@ Copie d'enregistrement < duplication des champs

@ Copie de pointeur < partage de référence

v : Vecteur copie : Vecteur
d’entiers d’entiers
ST TTTTTTEE STttt ‘: :"— ------------------------------------- \: t
capacite : L capacite : E n. :
entier 1o S entier = entier ° entier
- E —
ta|II.e : 5 : talllle : 5 :
entier : ; entier :
— — @ [1] [2] €1 [10]
elements : . elements : h b
. pointeur vers @ 5 . pointeur vers @ r—7bp -2 -8
' tableau d’entiers (__) : gtableau d’entiers |) T Al Y,
@ p : pointeur vers
tableau d’entiers
~
IUTA
Valence

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 18 /26

Exercice : ecrire

@ Copie profonde Vs copie superficielle

FONCTION copier(v: Vecteur de T) : Vecteur de T

VARIABLE copie : Vecteur de T
VARIABLE i : entier

coplie < v
copie.elements = ALLOUER tableau de T [v.capacite]

POUR 1 DE 1 A v.taille PAR PAS DE 1
((copie.elements)?) [i] < ((v.elements)T) [i]

FIN POUR

RETOURNER copie

FIN FONCTION IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 19 /26

Exercice : ecrire (bis)

FONCTION ecrire(v: Vecteur de T, n: entier, t: T)
: Vecteur de T

VARIABLE copie : Vecteur de T
VARIABLE p : pointeur vers tableau de T

copie ¢ copier(v)
p < cople.elements
(pP) [n] <+ t

RETOURNER copie

FIN FONCTION

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026

20 / 26

Exercice

ecrire

@ Copie profonde Vs copie superficielle

v : Vecteur copie : Vecteur
denters . dentiers .
' M 5 Ny
capaglte X 10 | capaglte X 10 |
entier : : entier ;
— ; — ;
) ol
taille : : taille : :
. 2 : . 2 :
entier ; entier :
- ! - !
elements : : . elements : :
pointeur vers @ |: . pointeur vers @2 r
tableau d’entiers |)

. tableau d’entiers |)

n: t:
entier entier
_ﬁgg [1] [2] O] [10]

p : pointeur vers

tableau d’entiers

Sébastien Jean (IUT Valence) R1.01, Algo

IUTA

Valence

Université Grenoble Alpes

v1.0, 6 janvier 2026 21 /26

Exercice : inserer

FONCTION inserer(v: Vecteur de T, n: entier, t: T)
: Vecteur de T

VARIABLE copie : Vecteur de T
VARIABLE p : pointeur vers tableau de T
VARIABLE 1 : entier

copie ¢ copier (v)
p < copie.elements

SI copile.taille = copie.capacite ALORS
copie.elements =
ALLOUER tableau de T[copie.capacitex*2]

FIN SI

(4 suivre ...)

IUTA

llllllllllllllllllll

FIN FONCTION

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 22 /26

Exercice : inserer

FONCTION inserer(v: Vecteur de T, n: entier, t: T)
Vecteur de T
(...Suite)

POUR cpt DE 1 A n-1 PAR PAS DE 1

((copie.elements)?) [cpt] < ((v.elements)T) [cpt]
FIN POUR

POUR cpt DE n A copie.taille PAR PAS DE 1
((copie.elements)) [cpt+1l] < ((v.elements)T) [cpt]
FIN POUR

((copie.elements)T) [n] <« t
copie.taille < copie.taille + 1
liberer(p)

RETOURNER copie

IUTA
FIN FONCTION Valence

llllllllllllllllllll

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 23 /26

Exercice : retirer

FONCTION retirer(v: Vecteur de T, n: entier)
: Vecteur de T

VARIABLE copie : Vecteur de T
VARIABLE p : pointeur vers tableau de T
VARIABLE 1 : entier

copie ¢ copier (v)
p < cople.elements

SI copie.taille / copie.capacite <= 0.25 ALORS

copie.elements =
ALLOUER tableau de T[copie.capacite div 2]

FIN SI
(4 suivre ...)
IUTA
FIN FONCTION Valence

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 24 /26

Exercice : retirer

FONCTION retirer(v: Vecteur de T, n: entier)
Vecteur de T

(...Suite)

POUR cpt DE 1 A n-1 PAR PAS DE 1
((copie.elements)?) [cpt] < ((v.elements)?T) [cpt]
FIN POUR

POUR cpt DE n+1 A copie.taille PAR PAS DE 1
((copie.elements)) [cpt] < ((v.elements)?) [cpt]
FIN POUR

copie.taille < copie.taille - 1
liberer(p)
RETOURNER copie

IUTA
FIN FONCTION Valence

llllllllllllllllllll

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 25 /26

IUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 6 janvier 2026 26 /26

