
TDA : File

Sébastien Jean

IUT de Valence
Département Informatique

v1.0, 26 novembre 2025



Type de données File

0 -7 23 -12Tête Queue

Type de données linéaire et dynamique similaire à un vecteur mais
accès FIFO (First In First Out)

Possibilité d’obtenir la taille, de savoir si la file est vide , de voir le
prochain élément, d’ajouter (en queue) ou retirer (en tête) un
élément

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 1 / 13



TDA File
Nom : File (de T)

Dépendances : Booléen, Entier, T (type des éléments)

Opérations :

Constructeurs :

file_vide : → File

Transformateurs :

ajouter : File x T → File

retirer : File → File

Observateurs :

taille : File → Entier

est_vide : File → Booléen

voir_prochain : File → T

A suivre . . .
Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 2 / 13



TDA File (suite)

Pré-conditions

retirer(f) → est_vide(f) = FAUX

voir_prochain(f) → est_vide(f) = FAUX

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 3 / 13



Exemples d ?opérations/situation

Ajouter un élément

0Tête Queue
ajouter(F,0)

file_vide()

F

0Tête Queue

ajouter(F,6)F

0Tête Queue6

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 4 / 13



Exemples d ?opérations/situation

Retirer un élément

6Tête Queue

retirer(F)

0Tête Queue6

F

0Tête Queue

retirer(F)F

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 5 / 13



Exemples d ?opérations/situation

Voir le prochain

voir_prochain(F)F

0Tête Queue

0

F

0Tête Queue

voir_prochain(F)F

0Tête Queue6

F

0Tête 6

0

Queue

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 6 / 13



TDA File (suite)

Axiomes

est_vide(file_vide()) = VRAI

est_vide(ajouter(f, e)) = FAUX

taille(file_vide()) = 0

taille(ajouter(f, e)) = taille(f) + 1

taille(retirer(f)) = taille(f) - 1

retirer(ajouter(file_vide(), e)) = file_vide()

voir_prochain(ajouter(f, e)) = e si taille(f) = 0

voir_prochain(ajouter(f, e)) = voir_prochain(f) si
taille(f) > 0

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 7 / 13



File et pseudo code

Dans notre pseudo code, on suppose que

Le constructeur est remplacé par la déclaration de la variable

Les transformateurs sont des mutateurs

Les paramètres sont passés par copie

VARIABLE f : File d’entiers
VARIABLE i : entier

ajouter(f, 3)
ajouter(f, 7)

i ← voir_prochain(f)
retirer(f)

AFFICHER(voir_prochain(f))

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 8 / 13



Exercice

Enoncé du problème
On souhaite inverser les éléments d’une file.

Spécification du problème

Donnée d’entrée : f , file de T (la file à inverser)
Donnée de sortie : r , file de T (la file inversée)
Pré-condition : (aucune)
Post-condition : f et r contiennent les mêmes éléments mais dans
l’orde inverse

Signature de la fonction

inverse_file (f : file de T) : file de T

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 9 / 13



Exercice
FONCTION inverse_file(f : file de T) : file de T

VARIABLE compteur : entier
VARIABLE p : pile de T
VARIABLE r : file de T

POUR compteur de 1 A taille(f) PAR PAS DE 1
empiler(p, voir_prochain(f))
retirer(f)

FIN POUR

POUR compteur de 1 A taille(f) PAR PAS DE 1
ajouter(r, voir_sommet(p))
dépiler(p)

FIN POUR

RETOURNER r

FIN FONCTION
Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 10 / 13



Exercice

FONCTION inv_file_rec(f : file de T,
p : pile de T ) : file de T

VARIABLE p : pile de T

SI est_vide(f) ALORS
POUR compteur de 1 A taille(p) PAR PAS DE 1
ajouter(f, voir_sommet(p))
dépiler(p)

FIN POUR
FIN SI

empiler(p, voir_prochain(f)))
retirer(f)

RETOURNER inv_file_rec(f, p)

FIN FONCTION
Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 11 / 13



Exercice

FONCTION inverse_file(f : file de T) : file de T

VARIABLE p : pile de T

RETOURNER inv_file_rec(f, p)

FIN FONCTION

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 12 / 13



Fin !

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 26 novembre 2025 13 / 13


