
Structures chaînées

Sébastien Jean

IUT de Valence
Département Informatique

v1.0, 5 janvier 2026

Structure chaînée

Une structure chaînée est un moyen d’organiser des données
dynamiquement, en établissant des liaisons exprimant des relations

Prédécesseur/ successeur , . . .

L’élément de base d’une structure chaînée est un maillon, composé :

d’une valeur (valeur simple, enregistrement, collection)

d’un (ou plusieurs) pointeur(s), matérialisant la ou les liaisons avec
d’autres maillons

Valeur Pointeur

Maillon

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 1 / 35

Structure chaînée

Les structures chaînées permettent de mettre en œuvre
des vecteurs, des piles, des files, des arbres, . . .

-1 7 0

“+”

“1” “7”

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 2 / 35

Rappels : variable de type pointeur

Une variable de type pointeur vers un type T est une variable
dont la valeur est l’adresse d’un emplacement mémoire où est
stockée une valeur de type T

VARIABLE pe : pointeur vers entier

n : entier

?

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

pe : pointeur vers entier ?

n pe

?

?

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 3 / 35

Rappels : initialisation d’une variable de type pointeur

Une variable de type pointeur vers un type T ne doit pas être lue si elle
n’est pas initialisée

On peut initialiser une variable de type pointeur avec la valeur
NUL pour indiquer qu’elle ne désigne pas encore d’emplacement

Elle peut alors être lue, on saura qu’elle ne désigne pas encore
d’emplacement

pe ← NUL

NUL

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

?

n pe

n : entier

pe : pointeur vers entier

?

NUL

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 4 / 35

Rappels : initialisation d’une variable de type pointeur

On ne peut pas « fabriquer d’adresse », on ne peut affecter comme
valeur à une variable de type pointeur que l’adresse d’une
variable (ou d’un paramètre) du type attendu

l’opérateur & désigne l’adresse d’une variable

pe ← &n

@0

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

?

n pe

n : entier

pe : pointeur vers entier

?

@0

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 5 / 35

Rappels : initialisation d’une variable de type pointeur

La valeur d’une variable de type pointeur vers le type T est l’adresse
de l’emplacement mémoire d’une valeur de type T

On dit que le pointeur référence la variable

pe ← &n

@0

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

?

n pe
référencement

n : entier

pe : pointeur vers entier

?

@0

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 6 / 35

Rappels : déréferencement d’une variable de type pointeur

L’opérateur ↑ exprime le déréférencement, c’est à dire la
désignation de l’emplacement mémoire dont l’adresse est
contenue dans le pointeur

@0

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

7

n pe

n : entier

pe : pointeur vers entier

7

@0

Un pointeur dont la valeur est NUL ou dont la valeur désigne un
emplacement non initialisé ne doit pas être déréférencé

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 7 / 35

Rappels : déréferencement d’une variable de type pointeur

L’opérateur ↑ peut être utilisé dans une expression

Dans ce cas l’expression vaut la valeur contenue dans
l’emplacement dont l’adresse est contenue dans le pointeur

afficher_entier(pe↑) // affiche 7

@0

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

7

n pe

n : entier

pe : pointeur vers entier

7

@0

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 8 / 35

Rappels : déréferencement d’une variable de type pointeur

L’opérateur ↑ peut être utilisé dans une affectation

Dans ce cas l’emplacement dont l’adresse est contenue dans le
pointeur est réaffecté avec la nouvelle valeur

pe↑ ← 8

@0

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

8

n pe

n : entier

pe : pointeur vers entier

8

@0

pe↑ ← pe ↑ +1 // ?

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 9 / 35

Rappels : allocation dynamique de mémoire

Allocation dynamique

Réservation de zone mémoire à la volée, sans variable

VARIABLE p : pointeur vers entier

p ← ALLOUER entier

ALLOUER réserve une nouvelle zone mémoire de taille adaptée au
stockage d’une valeur de type donné et retourne l’adresse de
début de la zone mémoire

@p: pointeur
vers entier

@

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 10 / 35

Rappels : allocation dynamique de mémoire

Libération de mémoire
En théorie : pas de contrainte sur la quantité de mémoire disponible

En pratique : ressources limitées, judicieux d’économiser.

VARIABLE p : pointeur vers entier
p ← ALLOUER entier
...
LIBERER p

LIBERER libère la zone mémoire située à partir de l’adresse contenue
dans le pointeur et de la taille correspondant au type de valeur
référencée par le pointeur

NULp: pointeur
vers entier

@

X
Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 11 / 35

Rappels : enregistrements
Un enregistrement est composé de plusieurs valeurs appelées
champs ou membres

Nombre de champs fixe, champs nommés et de type quelconque

Les opérations se limitent à la lecture et l’affectation des champs

Accès aux champs via la notation pointée (variable.champs)

ENREGISTREMENT Point

CHAMPS x : réel
CHAMPS y : réel

FIN ENREGISTREMENT

VARIABLE p : Point

p.x ← 0.0
p.y ← p.x + 1

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 12 / 35

Rappels : TDA : Vecteur

0 -7

1 2 3 4

23 -12

Type de données linéaire et dynamique, collection de valeurs (de type
T) stockées dans des cases contigües identifiées par un indice

Indices allant de 1 au nombre d’éléments

Possibilité de lire et écrire l’élément à un indice donné

Possibilité d’insérer et retirer un élément à un indice donné

Possibilité d’obtenir la taille (nombre d’éléments)

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 13 / 35

Rappels : TDA : Vecteur
Nom : Vecteur (de T)

Dépendances : Entier, T (type des éléments)

Opérations :

Constructeurs :

vecteur_vide : → Vecteur

Transformateurs :

ecrire : Vecteur x Entier x T → Vecteur

inserer : Vecteur x Entier x T → Vecteur

retirer : Vecteur x Entier → Vecteur

Observateurs :

lire : Vecteur x Entier → T

taille : Vecteur → Entier

A suivre . . .
Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 14 / 35

Rappels : TDA : Vecteur

Pré-conditions

ecrire(v, n, e) → 1 ≤ n ≤ taille(v)

inserer(v, n, e) → 1 ≤ n ≤ taille(v) + 1

retirer(v, n) → 1 ≤ n ≤ taille(v)

lire(v, n) → 1 ≤ n ≤ taille(v)

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 15 / 35

Rappels : TDA : Vecteur
Axiomes

taille(vecteur_vide()) = 0

taille(ecrire(v, n, e)) = taille(v)

taille(inserer(v, n, e)) = taille(v) + 1

taille(retirer(v, n)) = taille(v) - 1

lire(ecrire(vecteur_vide(), 0, e), 0) = e

lire(ecrire(v, 0, e), n) = lire(v, n) si n ≥ 1

retirer(inserer(v, n, e), n) = v

lire(inserer(v, n, e), n) = e

lire(inserer(v, n, e), p) = lire(v, p) si p < n

lire(inserer(v, n, e), p) = lire(v, p-1) si p ≥ n

lire(retirer(v, n), p) = lire(v, p) si p < n

lire(retirer(v, n), p) = lire(v, p+1) si p ≥ n

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 16 / 35

Exercice

On définit un enregistrement Maillon de T permettant de
représenter un maillon de structure simplement chaînée composé :

d’une valeur (de type T)

d’un pointeur vers Maillon de T

ENREGISTREMENT Maillon de T

CHAMPS valeur : T
CHAMPS suivant : pointeur vers Maillon de T

FIN ENREGISTREMENT

valeur : T
suivant:

pointeur vers
Maillon de T

Maillon de T

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 17 / 35

Exercice

On définit un enregistrement Vecteur de T permettant de manipuler
un Vecteur (dynamique) en s’appuyant sur une structure chainée

ENREGISTREMENT Vecteur de T

CHAMPS taille : entier
CHAMPS debut : pointeur vers Maillon de T

FIN ENREGISTREMENT

-1 7 0

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 18 / 35

Exercice

On considère que :

La déclaration d’une variable Maillon de T ou Vecteur de T
n’initialise pas les enregistrements

Les transformateurs de Vecteur de T sont des mutateurs

Les enregistrements sont passés par copie

Schématiser et écrire les opérations :

vecteur_vide, taille,

lire, ecrire,

retirer et inserer

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 19 / 35

vecteur_vide

v :
Vecteur de T

taille : 0
debut : NUL

(vecteur vide)

FONCTION vecteur_vide
(p : pointeur vers Vecteur de T) : (aucun)

(p↑).taille ← 0
(p↑).debut ← NUL

FIN FONCTION

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 20 / 35

taille

FONCTION taille (v : Vecteur de T) : entier

RETOURNER v.taille

FIN FONCTION

Cas d’un vecteur avec 2 éléments

v :
Vecteur de T

taille : 2
debut : @1

taille(v)

@1
Maillon de T

valeur : …
suivant : @2

@2
Maillon de T

valeur : …
suivant : NUL

2

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 21 / 35

lire

FONCTION lire (v : Vecteur de T, index : entier) : T

VARIABLE i : entier
VARIABLE p : pointeur vers Maillon de T

p ← v.debut
POUR i DE 1 à index - 1 PAR PAS DE 1

p ← (p↑).suivant
FIN POUR
RETOURNER (p↑).valeur

FIN FONCTION

@2 @3 NUL

v :
Vecteur de T

taille : 3
debut : @1

@1 @2 @3

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 22 / 35

ecrire

FONCTION ecrire (v : Vecteur de T, index : entier ,
t : T) : (aucun)

VARIABLE i : entier
VARIABLE p : pointeur vers Maillon de T

p ← v.debut
POUR i DE 1 à index - 1 PAR PAS DE 1

p ← (p↑).suivant
FIN POUR
(p↑).valeur ← t

FIN FONCTION

@2 @3 ! NUL

v :
Vecteur de T

taille : 3
debut : @1

@1 @2 @3

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 23 / 35

inserer

FONCTION inserer (pv : pointeur vers Vecteur de T,
index : entier , t : T) : (aucun)

VARIABLE i : entier
VARIABLE p : pointeur vers Maillon de T
VARIABLE np : pointeur vers Maillon de T

// A suivre ...

FIN FONCTION

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 24 / 35

inserer
FONCTION inserer (pv : pointeur vers Vecteur de T,

index : entier , t : T) : (aucun)

// Suite

np ← ALLOUER Maillon de T
(np↑).valeur ← t
(np↑).suivant ← NUL
SI (pv↑).taille = 0 ALORS

// Cas 1 (à suivre) : vecteur vide
SINON

SI index = 1 ALORS
// Cas 2 (à suivre) : insertion en tête

SINON
// Cas 3 (à suivre) : insertion au milieu

FIN SI
FIN SI
(pv↑).taille ← (pv↑).taille + 1

FIN FONCTION
Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 25 / 35

inserer : vecteur vide

(pv↑).debut ← np

Vecteur de T

taille : 0
debut : NUL@pv

pv :
pointeur vers
Vecteur de T @pv

Vecteur de T

taille : 1
debut : @np@pv

pv :
pointeur vers
Vecteur de T @pv

t

@np

NUL

np :
pointeur vers
Maillon de T

@np

t

@np

NUL

np :
pointeur vers
Maillon de T

@np

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 26 / 35

inserer : insertion en tête, vecteur non vide

(np↑).suivant ← (pv↑).debut
(pv↑).debut ← np

Vecteur de T

@pv

pv :
pointeur vers
Vecteur de T @pv

t

@np

NUL

np :
pointeur vers
Maillon de T

@np

@2 @3 NULtaille : 3
debut : @1

@1 @2 @3

Vecteur de T

@pv

pv :
pointeur vers
Vecteur de T @pv

t

@np

@1

np :
pointeur vers
Maillon de T

@np

@2 @3 NULtaille : 4
debut : @np

@1 @2 @3

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 27 / 35

inserer : insertion au milieu, vecteur non vide

p ← (pv↑).debut
POUR i DE 1 à index - 2 PAR PAS DE 1

p ← (p↑).suivant
FIN POUR
(np↑).suivant ← (p↑).suivant
(p↑).suivant ← np

t

@np

NUL
np :

pointeur vers
Maillon de T

@np

@2 @3 NUL

@1 @2 @3

p :
pointeur vers
Maillon de T

@2 maillon avant la
position d’insertion

@np
@3

X

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 28 / 35

inserer : cas du vecteur non vide
Exemple avec insertion en position 2

Vecteur de T

@pv

pv :
pointeur vers
Vecteur de T @pv

t

@np

NUL

np :
pointeur vers
Maillon de T

@np

@2 @3 NULtaille : 3
debut : @1

@1 @2 @3

Vecteur de T

@pv

pv :
pointeur vers
Vecteur de T @pv

t

@np

@2

np :
pointeur vers
Maillon de T

@np

@np @3 NULtaille : 4
debut : @1

@1 @2 @3

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 29 / 35

retirer
FONCTION retirer (pv : pointeur vers Vecteur de T,

index : entier) : (aucun)

VARIABLE i : entier
VARIABLE p : pointeur vers Maillon de T
VARIABLE xp : pointeur vers Maillon de T

SI (pv↑).taille = 1 ALORS
// Cas du dernier (seul) élément

SINON
SI index = 1 ALORS

// Cas du premier élément
SINON

// Autre cas...
FIN SI

FIN SI

(pv↑).taille ← (pv↑).taille - 1

FIN FONCTIONSébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 30 / 35

retirer : cas du seul élément

LIBERER (pv↑).debut
(pv↑).debut = NUL

Vecteur de T

taille : 0
debut : NUL@pv

pv :
pointeur vers
Vecteur de T @pv

Vecteur de T

taille : 1
debut : @1@pv

pv :
pointeur vers
Vecteur de T @pv

@1

NUL

@1

NUL

X
Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 31 / 35

retirer : cas du premier élément
xp ← (pv↑).debut
(pv↑).debut ← (xp↑).suivant
LIBERER (xp)

Vecteur de T

@pv

pv :
pointeur vers
Vecteur de T @pv

xp :
pointeur vers
Maillon de T

@xp @2

taille : 2
debut : @2

@1

Vecteur de T

@pv

pv :
pointeur vers
Vecteur de T @pv

taille : 3
debut : @1 @2 @3 NUL

@1 @2 @3

X
@3 NUL

@2 @3

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 32 / 35

retirer : autre cas

p ← (pv↑).debut
POUR i DE 1 à index -2 PAR PAS DE 1

p ← (p↑).suivant
FIN POUR
xp ← (p↑).suivant
(p↑).suivant ← (xp↑).suivant
LIBERER (xp)

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 33 / 35

retirer : autre cas

Exemple avec retrait en position 2

Vecteur de T

@pv

pv :
pointeur vers
Vecteur de T @pv

xp :
pointeur vers
Maillon de T

@xp

@3

@3

NUL
taille : 2
debut : @1

@1

@2

@3

Vecteur de T

@pv

pv :
pointeur vers
Vecteur de T @pv

taille : 3
debut : @1 @2 @3 NUL

@1 @2 @3

X
Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 34 / 35

Fin !

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 35 / 35

