Structures chalnées

Sébastien Jean

IUT de Valence
Département Informatique

v1.0, 5 janvier 2026

IUTA

Valence

Université Grenoble Alpes

Structure chainée

@ Une structure chainée est un moyen d'organiser des données
dynamiquement, en établissant des liaisons exprimant des relations

o Prédécesseur/ successeur , ...

@ L'élément de base d'une structure chainée est un maillon, composé :

o d'une valeur (valeur simple, enregistrement, collection)

o d'un (ou plusieurs) pointeur(s), matérialisant la ou les liaisons avec
d'autres maillons

Maillon

&
D
-
S
-
o.
S
=
@
-
=

IUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 1/35

Structure chainée

@ Les structures chatnées permettent de mettre en ceuvre
des vecteurs, des piles, des files, des arbres, . ..

@@ @
588

L) L)

Valence
Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 2/35

Rappels : variable de type pointeur

@ Une variable de type pointeur vers un type T est une variable
dont la valeur est I'adresse d'un emplacement mémoire ou est
stockée une valeur de type T

VARIABLE pe : pointeur vers entier

Variables Mémoire

) T oooooooooooooooooooooooooo- .
? n :entier | |
\ adresse 0 1 2 3 4 5 6 i
M | i
? pe :pointeur vers entier . valeur [? I I ? I I I I } i
-/ | i
| : pe |

IUTA

Valence

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026

Rappels : initialisation d'une variable de type pointeur

@ Une variable de type pointeur vers un type T ne doit pas étre lue si elle
n'est pas initialisée

@ On peut initialiser une variable de type pointeur avec la valeur
NUL pour indiquer qu elle ne désigne pas encore d’emplacement

e Elle peut alors étre lue, on saura qu'elle ne désigne pas encore
d'emplacement

pe < NUL
Variables Mémoire
T i .
? n :entier ! :
. adresse 0 1 2 3 4 5 6 i
) \ i
NUL pe : pointeur vers entier . valeur [? I INULI I I I } |
—___ ! i
: T T IUTA
n pe Valence

./
——

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 4 /35

Rappels : initialisation d'une variable de type pointeur

@ On ne peut pas « fabriquer d'adresse », on ne peut affecter comme
valeur a une variable de type pointeur que |'adresse d'une
variable (ou d'un paramétre) du type attendu

@ |'opérateur & désigne I'adresse d’une variable

pe < &n
Variables | Mémoire

) i

? n :entier .

\ adresse

) |

@0 pe :pointeur vers entier | valeur [I I @0 I I I I }
-/ I

n pe IUT/\

Valence

llllllllllllllllllll

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 5/35

Rappels : initialisation d'une variable de type pointeur

@ La valeur d'une variable de type pointeur vers le type T est |'adresse
de I'emplacement mémoire d’une valeur de type T

e On dit que le pointeur référence la variable

pe < &n
Variables | Mémoire
o | |
2 n :entier | :
| adresse
) |
@0 pe :pointeur vers entier | valeur [I I @0 I I I I J
o/ E
1’1 €— - - - pe
référencement |UT A
Volence

iversité Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 6/35

Rappels : déréferencement d'une variable de type pointeur

@ L'opérateur 1 exprime le déréférencement, c'est a dire la
désignation de I'emplacement mémoire dont |'adresse est
contenue dans le pointeur

Variables Mémoire
S Y ittt ettt
7 n :entier !
' adresse 0 1 2 3 4 5 6
— |
@0 pe : pointeur vers entier valeur [7 I I@OI I I I }
__ i

T T

@ Un pointeur dont la valeur est NUL ou dont la valeur désigne un
emplacement non initialisé ne doit pas étre déréférencé

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026

Rappels : déréferencement d'une variable de type pointeur

@ L'opérateur 1 peut étre utilisé dans une expression

e Dans ce cas |'expression vaut la valeur contenue dans
I’emplacement dont I'adresse est contenue dans le pointeur

afficher_entier(pe?) // affiche 7
Variables Mémoire

S s .
7 n :entier ! :
. adresse 0 1 2 3 4 5 6 i
S : i
@0 pe : pointeur vers entier . valeur { 7 I I @0 I I I I } i
-/ I i
I N <«--—-——----- pe |

IUTA

Valence

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 8/35

Rappels : déréferencement d'une variable de type pointeur

@ L'opérateur 1 peut étre utilisé dans une affectation

e Dans ce cas I'emplacement dont lI'adresse est contenue dans le
pointeur est réaffecté avec la nouvelle valeur

pel < 8

Variables Mémoire

8 n :entier !
i adresse

o 1 2 3 4 5 6 |

M : i
@0 pe : pointeur vers entier valeur [8 I I @0 I I I I } |

S 5

pel < pet +1 // 7 !

Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 9/35

Rappels : allocation dynamique de mémoire

@ Allocation dynamique

e Réservation de zone mémoire a la volée, sans variable

VARIABLE p : pointeur vers entier

p < ALLOUER entier

@ ALLOUER réserve une nouvelle zone mémoire de taille adaptée au
stockage d'une valeur de type donné et retourne |'adresse de
début de la zone mémoire

@

p: pointeur
vers entier

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 10 /35

Rappels : allocation dynamique de mémoire

@ Libération de mémoire

e En théorie : pas de contrainte sur la quantité de mémoire disponible

e En pratique : ressources limitées, judicieux d'économiser.

VARIABLE p : pointeur vers entier
p < ALLOUER entier

LIBERER p

@ LIBERER libére la zone mémoire située a partir de |'adresse contenue
dans le pointeur et de la taille correspondant au type de valeur
référencée par le pointeur

@

p: pointgur NUL X
vers entler

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 11 /35

Rappels : enregistrements

@ Un enregistrement est composé de plusieurs valeurs appelées
champs ou membres

e Nombre de champs fixe, champs nommés et de type quelconque
e Les opérations se limitent a la lecture et I'affectation des champs

o Accés aux champs via la notation pointée (variable.champs)

ENREGISTREMENT Point

CHAMPS x : réel
CHAMPS y : réel

FIN ENREGISTREMENT

VARIABLE p : Point

p.x < 0.0 "JTA\

p.y < p.x + 1 Valence

llllllllllllllllllll

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 12 /35

Rappels : TDA : Vecteur

1 2 3 4
[0 1—71231—12}
@ Type de données linéaire et dynamique, collection de valeurs (de type
T) stockées dans des cases contigiies identifiées par un indice

e Indices allant de 1 au nombre d’élements

@ Possibilité de lire et écrire I'élément a un indice donné
@ Possibilité d'insérer et retirer un élément a un indice donné

@ Possibilité d'obtenir la taille (nombre d'éléments)

IUTA

Valence

rsité Grenobl pe:

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 13 /35

Rappels : TDA : Vecteur

@ Nom : Vecteur (de T)

e Dépendances : Entier, T (type des éléments)
@ Opérations :
e Constructeurs :
® vecteur vide : — Vecteur
e Transformateurs :

@ ecrire : Vecteur x Entier x T — Vecteur
® inserer : Vecteur x Entier x T — Vecteur

@ retirer : Vecteur x Entier — Vecteur
e Observateurs :

@ lire : Vecteur x Entier — T

@ taille : Vecteur — Entier

IUTA

; Valence
@ A suivre ... M

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 14 /35

Rappels : TDA : Vecteur

@ Pré-conditions

o ecrire(v, n, e) — 1 <n < taille(v)
o inserer(v, n, e) — 1 <n < taille(v) + 1
o retirer(v, n) — 1 <n < taille(v)

o lire(v, n) — 1 < n < taille(v)

IUTA

Valence

rsité Grenobl pe:

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 15 /35

Rappels : TDA : Vecteur

@ Axiomes

@ taille(vecteur_vide()) = 0

e taille(ecrire(v, n, e)) = taille(v)

@ taille(inserer(v, n, e)) = taille(v) + 1
e taille(retirer(v, n)) = taille(v) - 1

@ lire(ecrire(vecteur_vide(), 0, e), 0) = e

@ lire(ecrire(v, 0, e), n) = lire(v, n) sin > 1

@ retirer(inserer(v, n, e), n) = v

@ lire(inserer(v, n, e), n) = e

@ lire(inserer(v, n, e), p) = lire(v, p) si p < n

e lire(inserer(v, n, e), p) = lire(v, p-1) si p > n

@ lire(retirer(v, n), p) = lire(v, p) si p < n IUTA
o lire(retirer(v, n), p) = lire(v, p+l) si p > n Valence

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 16 / 35

Exercice

@ On définit un enregistrement Maillon de T permettant de
représenter un maillon de structure simplement chainée composé :

o d'une valeur (de type T)

e d'un pointeur vers Maillon de T

ENREGISTREMENT Maillon de T

CHAMPS wvaleur : T
CHAMPS suivant : pointeur vers Maillon de T

FIN ENREGISTREMENT

Maillon de T

suivant:
valeur : T | pointeur vers |UTA

Maillon de T

llllllllllllllllllll

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 17 /35

Exercice

@ On définit un enregistrement Vecteur de T permettant de manipuler
un Vecteur (dynamique) en s'appuyant sur une structure chainée

ENREGISTREMENT Vecteur de T

CHAMPS taille : entier
CHAMPS debut : pointeur vers Maillon de T

FIN ENREGISTREMENT

el el

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 18 /35

Exercice

@ On considére que :

e La déclaration d'une variable Maillon de T ou Vecteur de T
n’initialise pas les enregistrements

o Les transformateurs de Vecteur de T sont des mutateurs

e Les enregistrements sont passés par copie

@ Schématiser et écrire les opérations :
@ vecteur_vide, taille,
@ lire, ecrire,

@ retirer et inserer

IUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 19 /35

vecteur_vide

VAR

_ Vecteur de T
(vecteur vide)

———————

B

FONCTION vecteur_vide
(p : pointeur vers Vecteur de T) : (aucun)

(pT) .taille «+ O
(p1) .debut <« NUL

FIN FONCTION

IUTA

Valence

rsité Grenobl pe:

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 20/35

taille

FONCTION taille (v : Vecteur de T) : entier

RETOURNER v.taille

FIN FONCTION

@ Cas d'un vecteur avec 2 éléments

v ol
Vecteur de T

| taille : 2 X
. debut : @1 !

taille (v)
@1 @2
Maillon de T Maillon de T
Zo T T TTE T \ Zo T T TTE T \
'valeur : .. : ' valeur .
'suivant : @2 : ' suivant : NUL /A\
 suivant PEe j| |1 sudvant @ AUL ; IUTZ
Valence

v1.0, 5 janvier 2026 21 /35

Sébastien Jean (IUT Valence)

lire

FONCTIQON 1lire (v : Vecteur de T, index : entier) : T

VARIABLE i : entier
VARIABLE p : pointeur vers Maillon de T

p < v.debut

POUR i DE 1 & index - 1 PAR PAS DE 1
p < (pT).suivant

FIN POUR

RETOURNER (pT) .valeur

FIN FONCTION

AV
Vecteur de T

@1 @2 @3
taille : 3 : EJE;E Jt_:{ | \
debut : @1 i -_{ I@z 1@3 NUL IUTA

__________________ VG ience

llllllllllllllllllll

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 22 /35

ecrire

FONCTION ecrire (v : Vecteur de T, index : entier,
t : T) : (aucun)

VARIABLE i : entier
VARIABLE p : pointeur vers Maillon de T

p < v.debut

POUR i DE 1 & index - 1 PAR PAS DE 1
p < (p?1).suivant
FIN POUR

(pT) .valeur + t

FIN FONCTION

AV
Vecteur de T

Sébastien Jean (IUT Valence) R1.01, Algo

v1.0, 5 janvier 2026 23 /35

inserer

FONCTION inserer (pv : pointeur vers Vecteur de T,
index : entier, t : T) : (aucun)
VARIABLE i : entier
VARIABLE p : pointeur vers Maillon de T
VARIABLE np : pointeur vers Maillon de T

// A suivre

FIN FONCTION

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 24 /35

inserer

FONCTION inserer (pv : pointeur vers Vecteur de T,
index : entier, t : T) : (aucun)

// Suite

np < ALLOUER Maillon de T
(npt) .valeur «+ t

(npt) .suivant < NUL

SI (pv]).taille = O ALORS

// Cas 1 (a sutvre) : wecteur vide
SINON
SI index = 1 ALORS
// Cas 2 (a suivre) : insertion en téte
SINON
// Cas 3 (a suivre) : insertion au milieu
FIN SI
FIN SI
(pvT) .taille <« (pv]) .taille + 1 l,g;rn{‘:

FIN FONCTION

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026

inserer : vecteur vide

(pv?T) .debut < np

1 pv : np I
| pointeur vers Vecteur de T pointeur vers i
i Vecteur de T Gpv Maillon de T @np |
U (e s I
I] N I
! 'taille : O I !
| Y 2 Y | - === = 0 | QArnr b — . . L |
| Upv ' debut NUL ! @np >t N
: I 7 :
| ,l
S T T T T T T T T T T e e e e e e e e e e e e e e e e \l
a np :
| pointeur vers | @np i
i pv s Maillon de T !
| pointeur vers Vecteur de T i
i Vecteur de T Cpv @np v !
—————————————————— I
I [\ I
| 'taille : 1 I .
| @pv p————- | TEETTE T » t | NUL| !
| Epv | debut @np ! l
\ |
I 4 |
!)

IUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 26 /35

inserer : insertion en téte, vecteur non vide

(np?) .suivant < (pvT).debut
(pv?T) .debut < np

PV :
pointeur vers Vecteur de T
Vecteur de T Gpv @1 @2 @3

np :
pointeur vers
Maillon de T @np

o o = = = o = o = o = o = o = = o = = = = ————

' pv : E

i pointeur vers Vecteur de T

' Vecteur de T @pv @np @1 @2 @3 |

: | taille : 4 : :

| Aoy e—me—m—- »>|| [I !

: @pv ' debut : enp | > t (ch @2 @3 NUL |

| 2 7 |

| % |

: np : i

! pointeur vers @np ! IUTA

! Maillon de T | A

T , Valence
Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 27 /35

inserer : insertion au milieu, vecteur non vide

p < (pvl]) .debut

POUR 1 DE 1 & index - 2 PAR PAS DE 1
p < (p?1).suivant

FIN POUR

(npt) .suivant < (p7).suivant

(pT) .suivant < np

__

pointzu;: vers a2 maillon avant la
Maillon de T position d’insertion

Q1 @2 | @3
v
Y4 N\
[I @2 H @3 NUL
N _/
)
@np __/

\)\\\\\\\\\\\\\\\\\Enp P

np :
pointeur vers @np -———- t NUL
Maillon de T

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 28 /35

inserer : cas du vecteur non vide

@ Exemple avec insertion en position 2

PV :
pointeur vers Vecteur de T
Vecteur de T @l @2 @3

_ 'taille : 3 l

[}
]
I
]
]
]
[}
[}
[}
I
I
]
]
I
[}
[}
. I
* 1
p01nteur vers !
I

[}

[}

]

I

I

]

]

I

[}

[}

]

Maillon de T @np
@np |-———- NUL

: pv : i

i pointeur vers Vecteur de T |

| Vecteur de T @pv @np i

T [|

| N I

R e :tallle : Ho 5 !

| 2 ‘debut ; enp & ¢ |

o |

’ |

| np |

! pointeur vers @np

\ Maillon de T IUTA
| ;Valence
——— Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 29 /35

retirer

FONCTION retirer (pv : pointeur vers Vecteur de T,
index : entier) : (aucun)

VARIABLE i : entier
VARIABLE p : pointeur vers Maillon de T
VARIABLE xp : pointeur vers Maillon de T

SI (pvl]).taille = 1 ALORS
// Cas du dernier (seul) élément
SINON

SI index = 1 ALORS
// Cas du premier élément

SINON
// Adutre cas...
FIN SI
FIN SI
AN
(pvT) .taille < (pvl).taille - 1 ugg;&a

llllllllllllllllllll

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 30/35

retirer : cas du seul élément

LIBERER (pv7) .debut
(pvt) .debut = NUL

pv :
pointeur vers Vecteur de T
Vecteur de T Gpv

itaille : 1
debut : @1
\

()
o
<
|
!
!
|
/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\
|
|
Z
(@
=

: pv : E
i pointeur vers Vecteur de T !
| Vecteur de T Gpv Q1 !
T — e e - |
I [3 I
! dov ome. 'taille : 0 i !
| P 'debut : NUL | :
| \ ;

e :
\ /l

IUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 31/35

retirer : cas du premier élément

xp < (pv?).debut
(pvt) .debut «+ (xp?T).suivant
LIBERER (xp)

IUTA

Valence

Université Grenoble Alpes

Maillon de T

f pv : H
bointeur vers Vecteur de T

IVecteur de T @pv @1 @2 @3 :
R A |
! ' N |
| I taille 3 | |
.| epv ——— > L > @2 @3 NUL !
| b | debut : @1 | [I :
I N S /)
! |
i !
' ,
I, """

! PV :

| pointeur vers Vecteur de T

| Vecteur de T @pv @2

I

1 ST Tttt T T \

dov e ,|i taille : 2 ' N

! P | debut @2

: e /

[}

]

|

[}

| Xp :

i pointeur vers @xp

[}

]

l

\

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 32/35

retirer : autre cas

p < (pvl) .debut

POUR 1 DE 1 a index -2 PAR PAS DE 1
p < (pT).suivant

FIN POUR

xp < (pT).suivant

(pT) .suivant < (xp?T) .suivant

LIBERER (xp)

IUTA

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 33/35

retirer : autre cas

@ Exemple avec retrait en position 2

Maillon de T

TS TTTTTTTTTTTTTTTTTTTTTTTTTTTOTOTOOTTTTO T OO I T IITTTIITTTmITTIITTTIN \
[}

i pv : |
! pointeur vers Vecteur de T i
! Vecteur de T Cpv Q1 @2 @3 |
P U - o cooooooooooo N]
I]]
! ' taille : 3 : |
i @pv -—-—-—- -»i debut . @1 i ------- »[]:@2}—»[Iﬁ@3}—>[j{NUL}

! ! ’ |
1 N N |
! |
'\ |
' ___ l
| pv |
| pointeur vers Vecteur de T l
i Vecteur de T @pv @1 @3 i
: C T N :
N e | taille 2 ! !
7 B / |
I]
[} [}
[} [}
I]
] I
l :
: Xp :
! pointeur vers @xp

l l
l |
| |

T " JUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 34 /35

IUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) R1.01, Algo v1.0, 5 janvier 2026 35/35

