Langage C : Pointeurs

Sébastien Jean

IUT de Valence
Département Informatique

v1.0, 13 novembre 2025

IUTA

Valence

Université Grenoble Alpes



Interlude : Création/clonage d'un projet Gitlab

@ Créer un projet PointeursC sur Gitlab (avec un README)
@ Cloner le projet depuis VsCode et ouvrir le dépot

@ Modifier le fichier README.md pour indiquer a quoi sert ce projet
@ N.B. : pour chacun des exemples/exercices ExX suivant :

e Ecrire le programme dans ExX/src/main.c
et le compiler dans ExX/build/ExX
o Rédiger un jeu d’essai dans un fichier ExerciceX/Essai (si IJUTA

, : Valence
nécessaire) bt

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 1/22



Pseudo code : variables (rappels)

@ Une variable de type pointeur vers un type T est une variable
dont la valeur est I'adresse d'un emplacement mémoire ou est
stockée une valeur de type T

VARIABLE pe : pointeur vers entier

Variables Mémoire

S T oo N
? n :entier |
. adresse 0 1 2 3 4 5 6 i
. ! i
? pe :pointeur vers entier | valeur [ ? I I ? I I I I } i
—___ l i
| ; pe |

IUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 2/22



C : variables

@ Déclaration d'une variable suivant la syntaxe type *nom

int *pl; // pointeur sur un entier
double *p2; // pointeur sur un double
char *p3; // pointeur sur un caractére

@ N.B. les valeurs des pointeurs en C (les adresses) sont de type
unsigned long

IUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 3/22



C : la fonction sizeof

@ La fonction sizeof s'applique & un nom de type ou a une expression

@ Elle retourne une valeur de type unsigned long qui correspond 3
I'espace de stockage occupé par le type ou |'expression

e unsigned long — ’lu pour printf

Ecrire un programme C qui ...

@ Créer une variable de type bool, char, short, int, long, float et
double

@ Créer une variable de type tableau de 4 cases pour chacun des
types précédents

@ Créer une variable de type pointeur vers pour chacun des
types précédents

@ Afficher les espaces de stockage pour chacun des types
et chacune des variables

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 4 /22



C : la fonction sizeof

printf ("%1lu %lu %lu %1lu %1lu %lu %lul\n",

sizeof (char) ,
sizeof (long),

L]

5

bool b
char C
short S
int 1;
1
f
d

-

»

»

long
float
double

“»

“

b

printf ("%1lu %lu %lu %1lu %1lu %lu %lu\n",
sizeof (c),

sizeof (s),

sizeof (d));

sizeof (1),

sizeof (short) ,
sizeof (float) ,

sizeof (1),

sizeof (bool),
sizeof (int) ,
sizeof (double)) ;

sizeof (b) ,

sizeof (f) ,

Sébastien Jean (IUT Valence)

v1.0, 13 novembre 2025

5/22



C : la fonction sizeof

bool tb [4];
char tc[4];
short ts [4];
int ti[4];
long t1l [4];

float tf [4];
double td[4];

printf ("%1lu %lu %lu %lu %lu %lu %lu\n",

sizeof (tc), sizeof(ts), sizeof (ti),

sizeof (tf), sizeof(td)));

sizeof (tb),

sizeof (tl)),

A

v1.0, 13 novembre 2025

Valence
Université Grenoble Alpes

Sébastien Jean (IUT Valence)

6 /22



C : la fonction sizeof

bool *pb ;
char *pcC;
short *ps ;
int *p1l;
long *pl;

float *pf ;
double *pd ;

printf ("%1lu %lu %lu %lu %lu %1lu %lul\n",

sizeof (pc), sizeof(ps), sizeof (pi),

sizeof (pf), sizeof (pd));

sizeof (pb),

sizeof (pl),

v1.0, 13 novembre 2025

IUTA

Valence
Université Grenoble Alpes

7/22

Sébastien Jean (IUT Valence)



C : taille des types standard (x64)

@ bool : 1 octet

@ char : 1 octet

@ short : 2 octets

@ int : 4 octets

@ long : 8 octets

@ float : 4 octets

@ double : 8 octets

o t[x] : x * (taille de t) octets

@ t * : 8 octets IUTA

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 8/22



C : promotion de type

#include <stdio.h>
#include <stdbool.h>

int main() {

printf ("%1lu %lu %lu %lu\n", sizeof (true),
sizeof (’c?’), sizeof (42), sizeof (1.0));

printf ("%1lu %lu %lu %lu\n", sizeof (42L),
sizeof (1.0f), sizeof (42 + 1L),
sizeof (1.0f + 1.0));

@ N.B. : le suffixe L impose la valeur a étre de type long
| IUTA
@ N.B. : le suffixe f impose la valeur a étre de type float Jalence

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 9/22



C : promotion de type

@ Le type standard des entiers est int, toute expression entiére de
type autre que int qui peut étre stockée dans un int est
automatiquement promue en int

o Ex : les valeurs littérales true, >z’ et 42 sont promues vers int

@ Le type standard des réels est double, toute expression réelle de
type float est promue automatiquement en double

IUTA

Valence

rsité Grenobl pe:

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 10 /22



C : promotion de type

@ Les opérations arithmétiques promeuvent automatiquement les

opérandes entiéres ou réelles pour qu'elles s'adaptent au type le plus
large (au sens du stockage)

e 42 + 1L — 42 promu en long, résultat de type long
e 1.0f + 2.0 — 1.0f promu en double, résultat de type double

@ Lors des appels de fonction, les parameétres et valeur de retour sont
promus automatiquement si besoin

o Ex. si la fonction void add(long a, long b) est appelée avec des
expressions de type int, celles-ci sont promues en long

IUTA

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 11 /22



C : conversion de type

@ Les opérations arithmétiques convertissent automatiquement les
opérandes pour qu elles s'adaptent a la sémantique des opérations

e 42 / 10.3 — 10.3 est un double, la division a une sémantique de
division réelle, 42 est converti en double, le résultat est de type
double

e Idem pour +, - et *

@ Lors des appels de fonction, les paramétres et valeur de retour sont
convertis automatiquement si besoin

e Ex. si la fonction void add(double a, double b) est appelée avec
des expressions de type int, celles-ci sont converties en double

IUTA

Valence

niversité Grenoble Alpe:

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 12 /22



C : forcage de type

@ Le forcage de type (ou cast) consiste & imposer un type a une
expression, solt par conversion, soit par
réduction de I'espace de stockage

@ Le forcage de type peut étre automatique

o char ¢ = ’z’> — ’z’ de type int forcé en char (réduction)
@ int i = 2.0 — 2.0 de type double forcé en int (conversion)

o float f = 2 — 2 de type int forcé en float (conversion)

@ Le forcage de type peut étre explicite

o Le forcage de type s'exprime via la syntaxe (type) expression

o Ex: (unsigned int) -5, ou (double) a / (double) b
force la division a étre réelle si a et b sont des entiers

IUTA

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 13 /22



Pseudo code : Initialisation (rappel)

@ Une variable de type pointeur vers un type T ne doit pas étre lue si elle
n'est pas initialisée

@ On peut initialiser une variable de type pointeur avec la valeur
NUL pour indiquer qu'elle ne désigne pas encore d’emplacement

o Elle peut alors étre lue, on saura qu'elle ne désigne pas encore
d'emplacement

pe < NUL
Variables Mémoire
o N e
? n :entier

NUL pe : pointeur vers entier

S
®
c
=~
)
—
—
= N
—| €
—
w
—
NN
—
O
—
(0))
—

Université Grenoble Alpes

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 14 /22



Pseudo code : Initialisation (rappel)

@ On peut affecter comme valeur a une variable de type pointeur
I'adresse d'une variable (ou d’'un paramétre) du type attendu

o L'opérateur & désigne I'adresse d'une variable

@ La valeur d'une variable de type pointeur vers le type T est |'adresse
de I'emplacement mémoire d’une valeur de type T

e On dit que le pointeur référence la variable

pe < &n
Variables i Mémoire
o | |
? n :entier : i
\ adresse 0 1 2 3 4 5 6 i
) i i
@0 pe : pointeur vers entier \ valeur [ ? I I@OI I I I 1 |
- i !
R <----pe IUTA
référencement Volemncis

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 15 /22



C : intialisation

int 1 = 42;

int *pl; // pointeur non initialisé |

int *p2 = NULL; // pointeur inttialisé
// a nul
int *p3 = &ij; // pointeur inttialisé

o Afficher p2 et p3.

o N.B. : 7p pour le formattage de pointeurs dans printf IUTA

Valence

rsité Grenobl pe:

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 16 /22



Pseudo Code : déréférencement de pointeur (rappel)

@ L'opérateur 1 exprime le déréférencement, c'est a dire la
désignation de I'emplacement mémoire dont I'adresse est
contenue dans le pointeur

@ L'opérateur 1 peut étre utilisé dans une expression

e Dans ce cas |'expression vaut la valeur contenue dans
I’emplacement dont I’'adresse est contenue dans le pointeur

afficher_entier(pe?) // affiche 7
Variables Mémoire

S N e ittt ittt

7 n :entier !

| adresse

S !

@0 pe : pointeur vers entier \ valeur [ I I @0 I I I I }
-/ l

IUT/\

Sébastien Jean (IUT Valence) .01, v1.0, 13 novembre 2025 17 /22



Pseudo Code : déréférencement de pointeur (rappel)

@ L'opérateur 1 peut étre utilisé dans une affectation

e Dans ce cas I'emplacement dont I'adresse est contenue dans le
pointeur est réaffecté avec la nouvelle valeur

pel < 8

Variables Mémoire

8 n :entier
adresse

~ EE T

_________________________________________________________________

@0 pe : pointeur vers entier

S

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 18 /22



C : déréférencement de pointeur

@ Le déréférencement de pointeur s'effectue via la syntaxe *
pointeur

e Dans une expression — valeur contenue 3 I'@ désignée par le pointeur

e Dans une affectation — réaffectation de |la valeur contenue a |'adresse
désignée par le pointeur

int 1 = 42;
int *xp = &i;
printf ("%p %d\n", p, *p);

*p = 1;
printf ("%p %d\n", p, *p);

varrence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 19 /22



Exercice (version naive)

Enoncé du probléme

On veut permuter les valeurs de 2 entiers.

Spécification du probléme

Donnée d’entrée : 1, entier (premier)

Donnée d’entrée : €2, entier (second)

Pré-condition : (aucune)

o
o
@ Donnée de sortie : (aucune)
o
o

Post-condition : les 2 valeurs sont permutées.

Signature de la fonction

@ permute (el : entier, €2 : entier) : (aucun)

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 20 /22



Exercice (version correcte)

Enoncé du probléme

On veut permuter les valeurs de 2 entiers.

Spécification du probléme

@ Donnée d’'entrée : pel, pointeur vers un entier (premier)

@ Donnée d’'entrée : pe2, pointeur vers un entier (second)

@ Donnée de sortie : (aucune)
@ Pré-condition : pel -+ NUL ET pe2 #+ NUL

@ Post-condition : les 2 valeurs sont permutées.

10
4
Signature de la fonction

@ permute (pel : pointeur vers entier, pe2 : pointeur vers entier) :
(aucun)

LOARAS

Valence
Université Grenoble Alpes

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 21 /22



IUTA

Valence

Université Grenoble Alpes

Sébastien Jean (IUT Valence) v1.0, 13 novembre 2025 22 /22



