
Langage C : Pointeurs

Sébastien Jean

IUT de Valence
Département Informatique

v1.0, 13 novembre 2025

Interlude : Création/clonage d’un projet Gitlab

Créer un projet PointeursC sur Gitlab (avec un README)

Cloner le projet depuis VsCode et ouvrir le dépôt

Modifier le fichier README.md pour indiquer à quoi sert ce projet

N.B. : pour chacun des exemples/exercices ExX suivant :

Ecrire le programme dans ExX/src/main.c
et le compiler dans ExX/build/ExX

Rédiger un jeu d’essai dans un fichier ExerciceX/Essai (si
nécessaire)

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 1 / 22

Pseudo code : variables (rappels)

Une variable de type pointeur vers un type T est une variable
dont la valeur est l’adresse d’un emplacement mémoire où est
stockée une valeur de type T

VARIABLE pe : pointeur vers entier

n : entier

?

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

pe : pointeur vers entier ?

n pe

?

?

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 2 / 22

C : variables

Déclaration d’une variable suivant la syntaxe type *nom

Code C

int *p1; // pointeur sur un entier

double *p2; // pointeur sur un double

char *p3; // pointeur sur un caractère

N.B. les valeurs des pointeurs en C (les adresses) sont de type
unsigned long

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 3 / 22

C : la fonction sizeof

La fonction sizeof s’applique à un nom de type ou à une expression

Elle retourne une valeur de type unsigned long qui correspond à
l’espace de stockage occupé par le type ou l’expression

unsigned long → %lu pour printf

Ecrire un programme C qui . . .
Créer une variable de type bool, char, short, int, long, float et
double

Créer une variable de type tableau de 4 cases pour chacun des
types précédents

Créer une variable de type pointeur vers pour chacun des
types précédents

Afficher les espaces de stockage pour chacun des types
et chacune des variables

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 4 / 22

C : la fonction sizeof
Code C

printf("%lu %lu %lu %lu %lu %lu %lu\n", sizeof(bool),
sizeof(char), sizeof(short), sizeof(int),
sizeof(long), sizeof(float), sizeof(double));

bool b;
char c;
short s;
int i;
long l;
float f;
double d;

printf("%lu %lu %lu %lu %lu %lu %lu\n", sizeof(b),
sizeof(c),

sizeof(s), sizeof(i), sizeof(l), sizeof(f),
sizeof(d));

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 5 / 22

C : la fonction sizeof

Code C

bool tb[4];
char tc[4];
short ts[4];
int ti[4];
long tl[4];
float tf[4];
double td[4];

printf("%lu %lu %lu %lu %lu %lu %lu\n", sizeof(tb),
sizeof(tc), sizeof(ts), sizeof(ti), sizeof(tl)),
sizeof(tf), sizeof(td)));

...

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 6 / 22

C : la fonction sizeof

Code C

bool *pb;
char *pc;
short *ps;
int *pi;
long *pl;
float *pf;
double *pd;

printf("%lu %lu %lu %lu %lu %lu %lu\n", sizeof(pb),
sizeof(pc), sizeof(ps), sizeof(pi), sizeof(pl),
sizeof(pf), sizeof(pd));

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 7 / 22

C : taille des types standard (x64)

bool : 1 octet

char : 1 octet

short : 2 octets

int : 4 octets

long : 8 octets

float : 4 octets

double : 8 octets

t[x] : x * (taille de t) octets

t * : 8 octets

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 8 / 22

C : promotion de type

Compiler et exécuter le code C

#include <stdio.h>
#include <stdbool.h>

int main() {

printf("%lu %lu %lu %lu\n", sizeof(true),
sizeof(’c’), sizeof (42), sizeof (1.0));

printf("%lu %lu %lu %lu\n", sizeof (42L),
sizeof (1.0f), sizeof (42 + 1L),
sizeof (1.0f + 1.0));

N.B. : le suffixe L impose la valeur a être de type long

N.B. : le suffixe f impose la valeur a être de type float
Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 9 / 22

C : promotion de type

Le type standard des entiers est int, toute expression entière de
type autre que int qui peut être stockée dans un int est
automatiquement promue en int

Ex : les valeurs littérales true, ’z’ et 42 sont promues vers int

Le type standard des réels est double, toute expression réelle de
type float est promue automatiquement en double

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 10 / 22

C : promotion de type

Les opérations arithmétiques promeuvent automatiquement les
opérandes entières ou réelles pour qu’elles s’adaptent au type le plus
large (au sens du stockage)

42 + 1L → 42 promu en long, résultat de type long

1.0f + 2.0 → 1.0f promu en double, résultat de type double

Lors des appels de fonction, les paramètres et valeur de retour sont
promus automatiquement si besoin

Ex. si la fonction void add(long a, long b) est appelée avec des
expressions de type int, celles-ci sont promues en long

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 11 / 22

C : conversion de type

Les opérations arithmétiques convertissent automatiquement les
opérandes pour qu’elles s’adaptent à la sémantique des opérations

42 / 10.3 → 10.3 est un double, la division a une sémantique de
division réelle, 42 est converti en double, le résultat est de type
double

Idem pour +, - et *

Lors des appels de fonction, les paramètres et valeur de retour sont
convertis automatiquement si besoin

Ex. si la fonction void add(double a, double b) est appelée avec
des expressions de type int, celles-ci sont converties en double

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 12 / 22

C : forçage de type

Le forçage de type (ou cast) consiste à imposer un type à une
expression, soit par conversion, soit par
réduction de l’espace de stockage

Le forçage de type peut être automatique

char c = ’z’ → ’z’ de type int forcé en char (réduction)

int i = 2.0 → 2.0 de type double forcé en int (conversion)

float f = 2 → 2 de type int forcé en float (conversion)

Le forçage de type peut être explicite

Le forçage de type s’exprime via la syntaxe (type) expression

Ex : (unsigned int) -5 , ou (double) a / (double) b
force la division à être réelle si a et b sont des entiers

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 13 / 22

Pseudo code : Initialisation (rappel)

Une variable de type pointeur vers un type T ne doit pas être lue si elle
n’est pas initialisée

On peut initialiser une variable de type pointeur avec la valeur
NUL pour indiquer qu’elle ne désigne pas encore d’emplacement

Elle peut alors être lue, on saura qu’elle ne désigne pas encore
d’emplacement

pe ← NUL

NUL

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

?

n pe

n : entier

pe : pointeur vers entier

?

NUL

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 14 / 22

Pseudo code : Initialisation (rappel)

On peut affecter comme valeur à une variable de type pointeur
l’adresse d’une variable (ou d’un paramètre) du type attendu

L’opérateur & désigne l’adresse d’une variable

La valeur d’une variable de type pointeur vers le type T est l’adresse
de l’emplacement mémoire d’une valeur de type T

On dit que le pointeur référence la variable

pe ← &n

@0

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

?

n pe
référencement

n : entier

pe : pointeur vers entier

?

@0

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 15 / 22

C : intialisation

Code C

int i = 42;

int *p1; // pointeur non initialisé

int *p2 = NULL; // pointeur initialisé
// à nul

int *p3 = &i; // pointeur initialisé

Afficher p2 et p3.

N.B. : %p pour le formattage de pointeurs dans printf

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 16 / 22

Pseudo Code : déréférencement de pointeur (rappel)

L’opérateur ↑ exprime le déréférencement, c’est à dire la
désignation de l’emplacement mémoire dont l’adresse est
contenue dans le pointeur
L’opérateur ↑ peut être utilisé dans une expression

Dans ce cas l’expression vaut la valeur contenue dans
l’emplacement dont l’adresse est contenue dans le pointeur

afficher_entier(pe↑) // affiche 7

@0

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

7

n pe

n : entier

pe : pointeur vers entier

7

@0

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 17 / 22

Pseudo Code : déréférencement de pointeur (rappel)

L’opérateur ↑ peut être utilisé dans une affectation

Dans ce cas l’emplacement dont l’adresse est contenue dans le
pointeur est réaffecté avec la nouvelle valeur

pe↑ ← 8

@0

Mémoire

adresse

valeur

0 1 2 3 4 5 6

Variables

8

n pe

n : entier

pe : pointeur vers entier

8

@0

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 18 / 22

C : déréférencement de pointeur

Le déréférencement de pointeur s’effectue via la syntaxe *
pointeur

Dans une expression → valeur contenue à l’@ désignée par le pointeur

Dans une affectation → réaffectation de la valeur contenue à l’adresse
désignée par le pointeur

Code C

int i = 42;
int *p = &i;
printf("%p %d\n", p, *p);

*p = 1;
printf("%p %d\n", p, *p);

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 19 / 22

Exercice (version naïve)

Enoncé du problème
On veut permuter les valeurs de 2 entiers.

Spécification du problème

Donnée d’entrée : e1, entier (premier)
Donnée d’entrée : e2, entier (second)
Donnée de sortie : (aucune)
Pré-condition : (aucune)
Post-condition : les 2 valeurs sont permutées.

Signature de la fonction

permute (e1 : entier, e2 : entier) : (aucun)

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 20 / 22

Exercice (version correcte)

Enoncé du problème
On veut permuter les valeurs de 2 entiers.

Spécification du problème

Donnée d’entrée : pe1, pointeur vers un entier (premier)
Donnée d’entrée : pe2, pointeur vers un entier (second)
Donnée de sortie : (aucune)
Pré-condition : pe1 ̸= NUL ET pe2 ̸= NUL

Post-condition : les 2 valeurs sont permutées.

Signature de la fonction

permute (pe1 : pointeur vers entier, pe2 : pointeur vers entier) :
(aucun)

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 21 / 22

Fin !

Sébastien Jean (IUT Valence) R1.01, C v1.0, 13 novembre 2025 22 / 22

